Calmodulin modulation of proteins involved in excitation-contraction coupling.

نویسندگان

  • Wei Tang
  • Serap Sencer
  • Susan L Hamilton
چکیده

Muscle excitation-contraction coupling is, in large part, regulated by the activity of two proteins. These are the ryanodine receptor (RyR), which is an intracellular Ca2+ release channel and the dihydropyridine receptor (DHPR), which is a voltage gated L-type calcium channel. In skeletal muscle, the physical association between RyR1 and L-type Ca2+ channels is required for muscle excitation-contraction coupling. RyRs also regulate intracellular Ca2+ homeostasis, thereby contributing to a variety of cellular functions in different tissues. A wide variety of modulators directly regulate RyR1 activity and, consequentially, alter both excitation-contraction coupling and calcium homeostasis. Calmodulin, one of these cellular modulators, is a ubiquitously expressed 17 kDa Ca2+ binding protein containing four E-F hands, which binds to RyR1 at both nanomolar and micromolar Ca2+ concentrations. Apocalmodulin (Ca2+ free calmodulin) is a partial agonist, while Ca2+calmodulin is an inhibitor of RyR1. This conversion of calmodulin from an activator to an inhibitor is due to Ca2+ binding to the two C-terminal sites on calmodulin. Calmodulin can also modulate the L-type Ca2+ channel in the transverse tubule membrane, producing either inactivation or facilitation of the channel upon elevation of the local Ca2+ concentrations. Calmodulin binds to a region on RyR1 corresponding to amino acids 3614-3643 and to a region in the carboxy-terminal tail of the L-type Ca2+ channel (1 subunit. However, these calmodulin binding motifs on both proteins bind to undetermined motifs on the other protein, suggesting that they represent more general protein-protein interaction motifs. These findings raise questions about the role of calmodulin in excitation-contraction coupling in skeletal muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle.

Sarcoplasmic reticulum (SR) contains a Ca2+-conducting channel that is believed to play a central role in excitation-contraction coupling by releasing the Ca2+ necessary for muscle contraction. The effects of calmodulin on single cardiac and skeletal muscle SR Ca2+-release channels were studied using the planar lipid bilayer-vesicle fusion technique. Calmodulin inhibited Ca2+-release channel op...

متن کامل

Calmodulin and Excitation-Contraction Coupling.

Excitation-contraction coupling in cardiac and skeletal muscle involves the transverse-tubule voltage-dependent Ca(2+) channel and the sarcoplasmic reticulum Ca(2+) release channel. Both of these ion channels bind and are modulated by calmodulin in both its Ca(2+)-bound and Ca(2+)-free forms. Calmodulin is, therefore, potentially an important regulator of excitation-contraction coupling. Its pr...

متن کامل

The role of calmodulin kinase II in myocardial physiology and disease.

The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulates a rich variety of downstream targets in heart. Ca(2+) homeostatic proteins are important CaMKII targets that support myocardial excitation-contraction coupling. Under stress conditions, excessive CaMKII activity promotes heart failure and arrhythmias, in part through actions at Ca(2+) homeostatic proteins. Here...

متن کامل

Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.

Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac ...

متن کامل

Identification of Two Intrinsic Proteins Uniquely Associated with the Terminal Cisternae of the Sarcoplasmic Reticulum

The membranes directly involved in excitation-contraction coupling in skeletal muscle are the transverse tubular membrane and the junctional sarcoplasmic reticulum membrane. It is generally accepted that depolarization at the transverse tubular membrane initiates the release of calcium from the terminal cisternae of the sarcoplasmic reticulum. There have been recent studies toward the understan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2002